Производная функции, заданной неявно. Теоретический материал Правила дифференцирования неявно заданных функций

Будем учиться находить производные функций, заданных неявно, то есть заданных некоторыми уравнениями, связывающими между собой переменные x и y . Примеры функций, заданных неявно:

,

Производные функций, заданных неявно, или производные неявных функций, находятся довольно просто. Сейчас же разберём соответствующее правило и пример, а затем выясним, для чего вообще это нужно.

Для того, чтобы найти производную функции, заданной неявно, нужно продифференцировать обе части уравнения по иксу. Те слагаемые, в которых присутствует только икс, обратятся в обычную производную функции от икса. А слагаемые с игреком нужно дифференцировать, пользуясь правилом дифференцирования сложной функции, так как игрек - это функция от икса. Если совсем просто, то в полученной производной слагаемого с иксом должно получиться: производная функции от игрека, умноженная на производную от игрека. Например, производная слагаемого запишется как , производная слагаемого запишется как . Далее из всего этого нужно выразить этот "игрек штрих" и будет получена искомая производная функции, заданной неявно. Разберём это на примере.

Пример 1.

Решение. Дифференцируем обе части уравнения по иксу, считая, что игрек - функция от икса:

Отсюда получаем производную, которая требуется в задании:

Теперь кое-что о неоднозначном свойстве функций, заданных неявно, и почему нужны особенные правила их дифференцирования. В части случаев можно убедиться, что подстановка в заданное уравнение (см. примеры выше) вместо игрека его выражения через икс приводит к тому, что это уравнение обращается в тождество. Так. приведённое выше уравнение неявно определяет следующие функции:

После подстановки выражения игрека в квадрате через икс в первоначальное уравнение получаем тождество:

.

Выражения, которые мы подставляли, получились путём решения уравнения относительно игрека.

Если бы мы стали дифференцировать соответствующую явную функцию

то получили бы ответ как в примере 1 - от функции, заданной неявно:

Но не всякую функцию, заданную неявно, можно представить в виде y = f (x ) . Так, например, заданные неявно функции

не выражаются через элементарные функции, то есть эти уравнения нельзя разрешить относительно игрека. Поэтому и существует правило дифференцирования функции, заданной неявно, которое мы уже изучили и далее будем последовательно применять в других примерах.

Пример 2. Найти производную функции, заданной неявно:

.

Выражаем игрек штрих и - на выходе - производная функции, заданной неявно:

Пример 3. Найти производную функции, заданной неявно:

.

Решение. Дифференцируем обе части уравнения по иксу:

.

Пример 4. Найти производную функции, заданной неявно:

.

Решение. Дифференцируем обе части уравнения по иксу:

.

Выражаем и получаем производную:

.

Пример 5. Найти производную функции, заданной неявно:

Решение. Переносим слагаемые в правой части уравнение в левую часть и справа оставляем ноль. Дифференцируем обе части уравнения по иксу.

Известно, что функция y= f(x)может быть задана неявно с помощью уравнения, связывающем переменные х и у:

F(x,y) =0.

Сформулируем условия, при которых уравнение F(x,y )=0 определяет одну из переменных как функция другой. Справедлива следующая

Теорема (существования неявной функции) Пусть функция F(x,y )=0 удовлетворяет следующим условиям:

1) существует точка P˳(х˳,у˳), в которой F(x˳,y˳)=0

2) F’y(x˳,y˳)≠ 0

3) функции F’x (x ,y )и F’y (x ,y ) непрерывны в некоторой окрестности точки

P 0 (x 0 ,y 0).

Тогда существует единственная функция y =f (x), определенная на некотором интервале, содержащем точку, и удовлетворяющая при любом х из этого интервала уравнениюF(x,y)=0 , такая что f(x 0)= y0

Если у есть неявная функция от х , то есть она определяется из уравнения F (х , у ) = 0, то, предполагая, что у есть функция от х , мы получаем тождество F (х , у (х )) = 0, которое можно рассматривать как константу-функцию. Дифференцируя эту константу-функцию, получим:

Если в этом соотношении , то можно найти .

Дифференцируя соотношение (1) ещё раз, получим:

Соотношение (2) можно рассматривать как уравнение для определения второй производной. Дифференцируя соотношение (2) ещё раз, получим уравнение для определения третьей производной и т. д.

Производная по направлению. Вектор направления для случая двух и трех переменных (направляющие косинусы). Приращение функции по заданному направлению. Определение производной по направлению, ее выражение через частные производные. Градиент функции. Взаимное положение градиента и линии уровня в данной точке для функции двух переменных.

Производной z’I по направлению I функции двух переменных z=f(x;y) называется предел отношения приращения функции в этом направлении к величине перемещения ∆I при стремлении последней к 0: z’i=lim∆iz /∆I

Производная z’ I характеризует скорость изменения функции в направлении i.

Если функция z=f(x;y) имеет в точке М(x;y) непрерывные частные производные, то в этой точке существует производная по любому направлению, исходящему из точки М(x;y), которая вычисляется по формуле z’i=z’xˑcosα+z"yˑcosβ,где cosα, cosβ- направляющие к4осинусы вектора .

Градиентом функции z=f(x,y) называется вектор с координатами f’x, f’y. Обозначается z=(f’x,f’y) или .

Производная по направлению равна скалярному произведению градиента и единичного вектора, задающего направление I.

Вектор z в каждой точке направлен по нормали к линии уровня, проходящей через данную точку в сторону возрастания функции.

Частные производные f’x и f’y представляют собой производные функции z=f(x,y) по двум частным направлениям осей Ox и Oу.

Пусть z=f(x,y)- дифференцируемая функция в некоторой области D, M(x,y) . Пусть I – некоторое направление (вектор с началом в точке М),а =(cosα;cosβ).

При перемещении в данном направлении I точки М(х,у) в точку М1(х+∆х;y+∆y) функция z получит приращение ∆iz=f(x+∆х;y+∆y)-f(x;y) называемое приращением функции z в данном направлении I.

Если MM1=∆I то ∆x=∆icosα, ∆y=∆icosβ, следовательно, ∆iz=f(x+∆icosα; y+∆icosβ)-f(x;y).

Пусть непрерывная функция у от х задаётся неявно F (x , y ) = 0, где F (x , y ), F " x (x , y ), F " y (x , y ) есть непрерывные функции в некоторой области D, содержащей точку (х , у ), координаты которой удовлетворяют соотношениям F (x , y ) = 0, F " y (x , y ) ≠ 0. Тогда функция у от х имеет производную

Доказательство (смотри рисунок.). Пусть F " y (x , y ) > 0. Так как производная F " y (x , y ) непрерывна, то можно построить квадрат [х 0 - δ" , х 0 + δ" , у 0 - δ" , у 0 + δ" ], чтобы для всех его точек было F " y (x , y ) > 0, то есть F (x , y ) является монотонной по у при фиксированном х . Таким образом, выполнены все условия теоремы существования неявной функции у = f (x ), такой, что F (x , f (x )) º 0.
Зададим приращение Δ х . Новому значению х + Δ х будет соответствовать у + Δ у = f (x + Δ x ), такое, что эти значения удовлетворяют уравнению F (x + Δ x , y + Δ y ) = 0. Очевидно, что

Δ F = F (x + Δ x , y + Δ y ) − F (x , y ) = 0

и в этом случае

.

Из (7) имеем

.

Так как неявная функция у = f (x ) будет непрерывна, то Δ у → 0 при Δ х → 0, значит α → 0 и β → 0. Откуда окончательно имеем

.

Что и требовалось доказать.

Частные производные и дифференциалы высших порядков.

Пусть частные производные функции z = f (x , y ), определенной в окрестности точки М, существуют в каждой точке этой окрестности. В этом случае частные производные представляют собой функции двух переменных х и у , определенные в указанной окрестности точки М. Назовем их частными производными первого порядка. В свою очередь, частные производные по переменным х и у от функций в точке М, если они существуют, называются частными производными второго порядка от функции f (М ) в этой точке и обозначаются следующими символами

Частные производные второго порядка вида , , называются смешенными частными производными.

Дифференциалы высших порядков

Будем рассматривать dx в выражении для dy как постоянный множитель.Тогда функция dy представляет собой функцию только аргумента x и ее дифференциал в точке x имеет вид (при рассмотрении дифференциала от dy будем использовать новые обозначения для дифференциалов):

δ (d y ) = δ [f " (x ) d x ] = [f " (x ) d x ] " δ x = f "" (x ) d (x ) δx .

Дифференциал δ (d y ) от дифференциала dy в точке x , взятый при δx = dx , называется дифференциалом второго порядка функции f (x ) в точке x и обозначается d 2 y , т.е.

d 2 y = f ""(x )·(dx ) 2 .

В свою очередь, дифференциал δ(d 2 y ) от дифференциала d 2 y , взятый при δx = dx , называется дифференциалом третьего порядка функции f (x ) и обозначается d 3 y и т.д. Дифференциал δ(d n-1 y) от дифференциала d n -1 f , взятый при δx = dx , называется дифференциалом n - го порядка (или n - м дифференциалом) функции f (x ) и обозначается d n y .
Докажем, что для n - го дифференциала функции справедлива формула

d n y = y (n ) ·(dx ) n , n = 1, 2, … (3.1)

При доказательстве воспользуемся методом математической индукции. Для n = 1 и n = 2 формула (3.1) доказана. Пусть она верна для дифференциалов порядка n - 1

d n −1 y = y (n −1) ·(dx ) n −1 ,

и функция y (n -1) (x ) дифференцируема в некоторой точке x . Тогда

Полагая δx = dx , получаем

что и требовалось доказать.
Для любого n справедливо равенство

или

т.е. n - я производная функции y = f (x ) в точке x равна отношению n - го дифференциала этой функции в точке x к n - й степени дифференциала аргумента.

Производная по направлению функций нескольких переменных.

Рассматривается функция и единичный вектор . Проводится прямая l через т.М 0 с направляющим вектором

Определение 1. Производная функции u = u (x , y , z ) по переменной t называется производной по направлению l

Так как на этой прямой u – сложная функция одной переменной, то производная по t равна полной производной по t (§ 12).

Она обозначается и равна

Как известно, неявно заданная функция одной переменной определяется так: функция у независимой переменной x называется неявной, если она задана уравнением, не разрешенным относительно y:

Пример 1.11.

Уравнение

неявно задаёт две функции:

А уравнение

не задаёт никакой функции.

Теорема 1.2 (существования неявной функции).

Пусть функция z =f(х,у) и ее частные производные f"x и f"y определены и непрерывны в некоторой окрестности UM0 точки M0(x0y0). Кроме того, f(x0,y0)=0 и f"(x0,y0)≠0, тогда уравнение (1.33) определяет в окрестности UM0 неявную функцию y= y(x), непрерывную и дифференцируемую в некотором интервале D с центром в точке x0, причем y(x0)=y0.

Без доказательства.

Из теоремы 1.2 следует, что на этом интервале D:

то- есть имеет место тождество по

где "полная" производная находится согласно (1.31)

То есть (1.35) дает формулу нахождения производной неявно заданной функции одной переменной x .

Аналогично определяется и неявная функция двух и более переменных.

Например, если в некоторой области V пространства Oxyz выполняется уравнение:

то при некоторых условиях на функцию F оно неявно задаёт функцию

При этом по аналогии с (1.35) ее частные производные находятся так:

Пример 1.12. Считая, что уравнение

неявно задаёт функцию

найти z"x, z"y.

поэтому согласно (1.37) получаем ответ.

11.Использование частных производных в геометрии.

12.Экстремумы функции двух переменных.

Понятие максимума, минимума, экстремума функции двух переменных аналогичны соответствующим понятиям функции одной независимой переменной (см. п. 25.4).

Пусть функция z = ƒ(х;у) определена в некоторой области D, точка N(x0;y0) Î D.

Точка (х0;у0) называется точкой максимума функции z=ƒ(х;у), если существует такая d-окрестность точки (х0;у0), что для каждой точки (х;у), отличной от (хо;уо), из этой окрестности выполняется неравенство ƒ(х;у)<ƒ(хо;уо).

Аналогично определяется точка минимума функции: для всех точек (х; у), отличных от (х0;у0), из d-окрестности точки (хо;уо) выполняется неравенство: ƒ(х;у)>ƒ(х0;у0).

На рисунке 210: N1 - точка максимума, а N2 - точка минимума функции z=ƒ(x;у).

Значение функции в точке максимума (минимума) называется максимумом (минимумом) функции. Максимум и минимум функции называют ее экстремумами.

Отметим, что, в силу определения, точка экстремума функции лежит внутри области определения функции; максимум и минимум имеют локальный (местный) характер: значение функции в точке (х0;у0) сравнивается с ее значениями в точках, достаточно близких к (х0; у0). В области D функция может иметь несколько экстремумов или не иметь ни одного.

46.2. Необходимые и достаточные условия экстремума

Рассмотрим условия существования экстремума функции.

Теорема 46.1 (необходимые условия экстремума). Если в точке N(x0;y0) дифференцируемая функция z=ƒ(х;у) имеет экстремум, то ее частные производные в этой точке равны нулю: ƒ"x(х0;у0)=0, ƒ"y(х0;у0)=0.

Зафиксируем одну из переменных. Положим, например, у=у0. Тогда получим функцию ƒ(х;у0)=φ(х) одной переменной, которая имеет экстремум при х = х0. Следовательно, согласно необходимому условию экстремума функции одной переменной (см. п. 25.4), φ"(х0) = 0, т. е. ƒ"x(х0;y0)=0.

Аналогично можно показать, что ƒ"y(х0;у0) = 0.

Геометрически равенства ƒ"x(х0;у0)=0 и ƒ"y(х0;у0)=0 означают, что в точке экстремума функции z=ƒ(х;у) касательная плоскость к поверхности, изображающей функцию ƒ(х;у), параллельна плоскости Оху, т. к. уравнение касательной плоскости есть z=z0 (см. формулу (45.2)).

Замечание. Функция может иметь экстремум в точках, где хотя бы одна из частных производных не существует. Например, функцияимеет максимум в точке О(0;0) (см. рис. 211), но не имеет в этой точке частных производных.

Точка, в которой частные производные первого порядка функции z ≈ ƒ(х; у) равны нулю, т. е. f"x=0, f"y=0, называется стационарной точкой функ ции z.

Стационарные точки и точки, в которых хотя бы одна частная производная не существует, называются критическими точками.

В критических точках функция может иметь экстремум, а может и не иметь. Равенство нулю частных производных является необходимым, но не достаточным условием существования экстремума. Рассмотрим, например, функцию z = ху. Для нее точка О(0; 0) является критической (в ней z"x=у и z"y - х обращаются в ноль). Однако экстремума в ней функция z=ху не имеет, т. к. в достаточно малой окрестности точки О(0; 0) найдутся точки для которых z>0 (точки I и III четвертей) и z < 0 (точки II и IV четвертей).

Таким образом, для нахождения экстремумов функции в данной области необходимо каждую критическую точку функции подвергнуть дополнительному исследованию.

Теорема 46.2 (достаточное условие экстремума). Пусть в стационарной точке (хо;уо) и некоторой ее окрестности функция ƒ(х;у) имеет непрерывные частные производные до второго порядка включительно. Вычислим в точке (х0;у0) значения A=f""xx(x0;y0), В=ƒ""xy(х0;у0), С=ƒ""уy(х0;у0). Обозначим

1. если Δ > 0, то функция ƒ(х;у) в точке (х0;у0) имеет экстремум: максимум, если А < 0; минимум, если А > 0;

2. если Δ < 0, то функция ƒ(х;у) в точке (х0;у0) экстремума не имеет.

В случае Δ = 0 экстремум в точке (х0;у0) может быть, может не быть. Необходимы дополнительные исследования.

ЗАДАЧИ

1.

Пример. Найти промежутки возрастания и убывания функции . Решение. Первым шагом является нахождение обрасти определения функции . В нашем примере выражение в знаменателе не должно обращаться в ноль, следовательно, . Переходим к производной функции: Для определения промежутков возрастания и убывания функции по достаточному признаку решаем неравенства и на области определения. Воспользуемся обобщением метода интервалов. Единственным действительным корнем числителя является x = 2 , а знаменатель обращается в ноль при x = 0 . Эти точки разбивают область определения на интервалы, в которых производная функции сохраняет знак. Отметим эти точки на числовой прямой. Плюсами и минусами условно обозначим интервалы, на которых производная положительна или отрицательна. Стрелочки снизу схематично показывают возрастание или убывание функции на соответствующем интервале. Таким образом, и . В точке x = 2 функция определена и непрерывна, поэтому ее следует добавить и к промежутку возрастания и к промежутку убывания. В точке x = 0 функция не определена, поэтому эту точку не включаем в искомые интервалы. Приводим график функции для сопоставления с ним полученных результатов. Ответ: функция возрастает при , убывает на интервале (0; 2] .

2.

Примеры .

    Установить интервалы выпуклости и вогнутости кривой y = 2 – x 2 .

Найдем y "" и определим, где вторая производная положительна и где отрицательна. y " = –2x , y "" = –2 < 0 на (–∞; +∞), следовательно, функция всюду выпукла.

    y = e x . Так как y "" = e x > 0 при любых x , то кривая всюду вогнута.

    y = x 3 . Так как y "" = 6x , то y "" < 0 при x < 0 и y "" > 0 при x > 0. Следовательно, при x < 0 кривая выпукла, а при x > 0 вогнута.

3.

4. Дана функция z=x^2-y^2+5x+4y, вектор l=3i-4j и точка А(3,2). Найти dz/dl (я так понял производная функции по направлению вектора), gradz(A), |gradz(A)|. Найдем частные производные: z(по х)=2x+5 z(по y)=-2y+4 Найдем значения производных в точке А(3,2): z(по х)(3,2)=2*3+5=11 z(по y)(3,2)=-2*2+4=0 Откуда, gradz(A)=(11,0)=11i |gradz(A)|=sqrt(11^2+0^2)=11 Производная функции z по направлению вектора l: dz/dl=z(по х)*cosa+z(по у)*cosb, a,b-углы вектора l с осями координат. cosa=lх/|l|, cosb=ly/|l|, |l|=sqrt(lx^2+ly^2) lx=3, ly=-4, |l|=5. cosa=3/5, cosb=(-4)/5. dz/dl=11*3/5+0*(-4)/5=6,6.

Формула производной функции, заданной неявно. Доказательство и примеры применения этой формулы. Примеры вычисления производных первого, второго и третьего порядка.

Содержание

Производная первого порядка

Пусть функция задана неявным образом с помощью уравнения
(1) .
И пусть это уравнение, при некотором значении , имеет единственное решение . Пусть функция является дифференцируемой функцией в точке , причем
.
Тогда, при этом значении , существует производная , которая определяется по формуле:
(2) .

Доказательство

Для доказательства рассмотрим функцию как сложную функцию от переменной :
.
Применим правило дифференцирования сложной функции и найдем производную по переменной от левой и правой частей уравнения
(3) :
.
Поскольку производная от постоянной равна нулю и , то
(4) ;
.

Формула доказана.

Производные высших порядков

Перепишем уравнение (4), используя другие обозначения:
(4) .
При этом и являются сложными функциями от переменной :
;
.
Зависимость определяет уравнение (1):
(1) .

Находим производную по переменной от левой и правой части уравнения (4).
По формуле производной сложной функции имеем:
;
.
По формуле производной произведения :

.
По формуле производной суммы :


.

Поскольку производная правой части уравнения (4) равна нулю, то
(5) .
Подставив сюда производную , получим значение производной второго порядка в неявном виде.

Дифференцируя, аналогичным образом, уравнение (5), мы получим уравнение, содержащее производную третьего порядка :
.
Подставив сюда найденные значения производных первого и второго порядков, найдем значение производной третьего порядка.

Продолжая дифференцирование, можно найти производную любого порядка.

Примеры

Пример 1

Найдите производную первого порядка от функции, заданной неявно уравнением:
(П1) .

Решение по формуле 2

Находим производную по формуле (2):
(2) .

Перенесем все переменные в левую часть, чтобы уравнение приняло вид .
.
Отсюда .

Находим производную по , считая постоянной.
;
;
;
.

Находим производную по переменной , считая переменную постоянной.
;
;
;
.

По формуле (2) находим:
.

Мы можем упростить результат если заметим, что согласно исходному уравнению (П.1), . Подставим :
.
Умножим числитель и знаменатель на :
.

Решение вторым способом

Решим этот пример вторым способом. Для этого найдем производную по переменной левой и правой частей исходного уравнения (П1).

Применяем :
.
Применяем формулу производной дроби :
;
.
Применяем формулу производной сложной функции :
.
Дифференцируем исходное уравнение (П1).
(П1) ;
;
.
Умножаем на и группируем члены.
;
.

Подставим (из уравнения (П1)):
.
Умножим на :
.

Пример 2

Найти производную второго порядка от функции , заданной неявно с помощью уравнения:
(П2.1) .

Дифференцируем исходное уравнение, по переменной , считая что является функцией от :
;
.
Применяем формулу производной сложной функции.
.

Дифференцируем исходное уравнение (П2.1):
;
.
Из исходного уравнения (П2.1) следует, что . Подставим :
.
Раскрываем скобки и группируем члены:
;
(П2.2) .
Находим производную первого порядка:
(П2.3) .

Чтобы найти производную второго порядка, дифференцируем уравнение (П2.2).
;
;
;
.
Подставим выражение производной первого порядка (П2.3):
.
Умножим на :

;
.
Отсюда находим производную второго порядка.

Пример 3

Найти производную третьего порядка при от функции , заданной неявно с помощью уравнения:
(П3.1) .

Дифференцируем исходное уравнение по переменной считая, что является функцией от .
;
;
;
;
;
;
(П3.2) ;

Дифференцируем уравнение (П3.2) по переменной .
;
;
;
;
;
(П3.3) .

Дифференцируем уравнение (П3.3).
;
;
;
;
;
(П3.4) .

Из уравнений (П3.2), (П3.3) и (П3.4) находим значения производных при .
;
;
.

В продолжение темы:
Из Бумаги

Открытка, как сердечко, изготовленная своими руками. Фотографии готовых открыток. Открытка, как сердечко, изготовленная своими руками. Фотографии готовых открыток....

Новые статьи
/
Популярные