Производная функции y f x равна. Найти производную: алгоритм и примеры решений. Уравнения касательной и нормали

Найти выражение для производной экспоненциальной функции \(y = {e^x}\), пользуясь определением производной.

Решение.

Начальные шаги являются стандартными: сначала запишем приращение функции \(\Delta y\), соответствующее приращению аргумента \(\Delta x\): \[ {\Delta y = y\left({x + \Delta x} \right) - y\left(x \right) } = {{e^{x + \Delta x}} - {e^x} } = {{e^x}{e^{\Delta x}} - {e^x} } = {{e^x}\left({{e^{\Delta x}} - 1} \right).} \] Производная вычисляется как предел отношения приращений: \[ {y"\left(x \right) = \lim\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}} } = {\lim\limits_{\Delta x \to 0} \frac{{{e^x}\left({{e^{\Delta x}} - 1} \right)}}{{\Delta x}}.} \] Функция \(y = {e^x}\) в числителе не зависит от Δx и ее можно вынести за знак предела. Тогда производная принимает такой вид: \[ {y"\left(x \right) = {\left({{e^x}} \right)^\prime } } = {{e^x}\lim\limits_{\Delta x \to 0} \frac{{{e^{\Delta x}} - 1}}{{\Delta x}}.} \] Обозначим полученный предел через \(L\) и вычислим его отдельно. Заметим попутно, что \({e^0} = 1\) и, поэтому, можно записать \[ {L = \lim\limits_{\Delta x \to 0} \frac{{{e^{\Delta x}} - 1}}{{\Delta x}} } = {\lim\limits_{\Delta x \to 0} \frac{{{e^{\Delta x}} - {e^0}}}{{\Delta x}} = e"\left(0 \right),} \] то есть данный предел представляет собой значение производной показательной функции в нуле. Следовательно, \ Мы получили соотношение, в котором искомая производная выражается через саму функцию \(y = {e^x}\) и ее производную в точке \(x = 0\). Докажем, что \ Для этого вспомним, что число \(e\) определяется в виде бесконечного предела как \ а число \(e\) в степени \(\Delta x\) будет, соответственно, равно \[{e^{\Delta x}} = \lim\limits_{n \to \infty } {\left({1 + \frac{{\Delta x}}{n}} \right)^n}.\] Далее применим знаменитую формулу бинома Ньютона и разложим выражение под знаком предела в биномиальный ряд : \[{\left({1 + \frac{{\Delta x}}{n}} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{{\left({\frac{{\Delta x}}{n}} \right)}^k}} .\] Здесь \({C_n^k}\) обозначает число сочетаний из \(n\) элементов по \(k\). В европейских и американских учебниках число сочетаний обозначается как \ Вернемся к нашему пределу \(L\), который теперь можно записать в таком виде: \[ {L = \lim\limits_{\Delta x \to 0} \frac{{{e^{\Delta x}} - 1}}{{\Delta x}} } = {\lim\limits_{\Delta x \to 0} \frac{{\lim\limits_{n \to \infty } \left[ {\sum\limits_{k = 0}^n {C_n^k{{\left({\frac{{\Delta x}}{n}} \right)}^k}} } \right] - 1}}{{\Delta x}}.} \] Нам удобно в биномиальном ряде выделить первые два слагаемых: при \(k = 0\) и \(k = 1\). В результате получаем \[ {L = \lim\limits_{\Delta x \to 0} \frac{{\lim\limits_{n \to \infty } \left[ {\sum\limits_{k = 0}^n {C_n^k{{\left({\frac{{\Delta x}}{n}} \right)}^k}} } \right] - 1}}{{\Delta x}} } = {\lim\limits_{\Delta x \to 0} \frac{{\lim\limits_{n \to \infty } \left[ {C_n^0{{\left({\frac{{\Delta x}}{n}} \right)}^0} + C_n^1{{\left({\frac{{\Delta x}}{n}} \right)}^1} + \sum\limits_{k = 2}^n {C_n^k{{\left({\frac{{\Delta x}}{n}} \right)}^k}} } \right] - 1}}{{\Delta x}} } = {\lim\limits_{\Delta x \to 0} \frac{{\lim\limits_{n \to \infty } \left[ {1 + n \cdot \frac{{\Delta x}}{n} + \sum\limits_{k = 2}^n {C_n^k{{\left({\frac{{\Delta x}}{n}} \right)}^k}} } \right] - 1}}{{\Delta x}} } = {\lim\limits_{\Delta x \to 0} \frac{{\Delta x + \lim\limits_{n \to \infty } \sum\limits_{k = 2}^n {C_n^k{{\left({\frac{{\Delta x}}{n}} \right)}^k}} }}{{\Delta x}} } = {\lim\limits_{\Delta x \to 0} \left[ {1 + \frac{1}{{\Delta x}}\lim\limits_{n \to \infty } \sum\limits_{k = 2}^n {C_n^k{{\left({\frac{{\Delta x}}{n}} \right)}^k}} } \right] } = {1 + \lim\limits_{n \to \infty } \left[ {\lim\limits_{\Delta x \to 0} \left({\sum\limits_{k = 2}^n {C_n^k\frac{{{{\left({\Delta x} \right)}^{k - 1}}}}{{{n^k}}}} } \right)} \right].} \] Очевидно, что сумма ряда стремится к нулю при \(\Delta x \to 0\). Поэтому, \(L = 1\). Это означает, что производная экспоненциальной функции \(y = {e^x}\) равна самой функции: \

Процесс нахождения производной функции называется дифференцированием. Производную приходится находить в ряде задач курса математического анализа. Например, при отыскании точек экстремума и перегиба графика функции.

Как найти?

Чтобы найти производную функции нужно знать таблицу производных элементарных функций и применять основные правила дифференцирования :

  1. Вынос константы за знак производной: $$ (Cu)" = C(u)" $$
  2. Производная суммы /разности функций: $$ (u \pm v)" = (u)" \pm (v)" $$
  3. Производная произведения двух функций: $$ (u \cdot v)" = u"v + uv" $$
  4. Производная дроби : $$ \bigg (\frac{u}{v} \bigg)" = \frac{u"v - uv"}{v^2} $$
  5. Производная сложной функции : $$ (f(g(x)))" = f"(g(x)) \cdot g"(x) $$

Примеры решения

Пример 1
Найти производную функции $ y = x^3 - 2x^2 + 7x - 1 $
Решение

Производная суммы/разности функций равна сумме/разности производных:

$$ y" = (x^3 - 2x^2 + 7x - 1)" = (x^3)" - (2x^2)" + (7x)" - (1)" = $$

Используя правило производной степенной функции $ (x^p)" = px^{p-1} $ имеем:

$$ y" = 3x^{3-1} - 2 \cdot 2 x^{2-1} + 7 - 0 = 3x^2 - 4x + 7 $$

Так же было учтено, что производная от константы равна нулю.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ y" = 3x^2 - 4x + 7 $$

Если следовать определению, то производная функции в точке — это предел отношения приращения функции Δy к приращению аргумента Δx :

Вроде бы все понятно. Но попробуйте посчитать по этой формуле, скажем, производную функции f (x ) = x 2 + (2x + 3) · e x · sin x . Если все делать по определению, то через пару страниц вычислений вы просто уснете. Поэтому существуют более простые и эффективные способы.

Для начала заметим, что из всего многообразия функций можно выделить так называемые элементарные функции. Это относительно простые выражения, производные которых давно вычислены и занесены в таблицу. Такие функции достаточно просто запомнить — вместе с их производными.

Производные элементарных функций

Элементарные функции — это все, что перечислено ниже. Производные этих функций надо знать наизусть. Тем более что заучить их совсем несложно — на то они и элементарные.

Итак, производные элементарных функций:

Название Функция Производная
Константа f (x ) = C , C R 0 (да-да, ноль!)
Степень с рациональным показателем f (x ) = x n n · x n − 1
Синус f (x ) = sin x cos x
Косинус f (x ) = cos x − sin x (минус синус)
Тангенс f (x ) = tg x 1/cos 2 x
Котангенс f (x ) = ctg x − 1/sin 2 x
Натуральный логарифм f (x ) = ln x 1/x
Произвольный логарифм f (x ) = log a x 1/(x · ln a )
Показательная функция f (x ) = e x e x (ничего не изменилось)

Если элементарную функцию умножить на произвольную постоянную, то производная новой функции тоже легко считается:

(C · f )’ = C · f ’.

В общем, константы можно выносить за знак производной. Например:

(2x 3)’ = 2 · (x 3)’ = 2 · 3x 2 = 6x 2 .

Очевидно, элементарные функции можно складывать друг с другом, умножать, делить — и многое другое. Так появятся новые функции, уже не особо элементарные, но тоже дифференцируемые по определенным правилам. Эти правила рассмотрены ниже.

Производная суммы и разности

Пусть даны функции f (x ) и g (x ), производные которых нам известны. К примеру, можно взять элементарные функции, которые рассмотрены выше. Тогда можно найти производную суммы и разности этих функций:

  1. (f + g )’ = f ’ + g
  2. (f g )’ = f ’ − g

Итак, производная суммы (разности) двух функций равна сумме (разности) производных. Слагаемых может быть больше. Например, (f + g + h )’ = f ’ + g ’ + h ’.

Строго говоря, в алгебре не существует понятия «вычитание». Есть понятие «отрицательный элемент». Поэтому разность f g можно переписать как сумму f + (−1) · g , и тогда останется лишь одна формула — производная суммы.

f (x ) = x 2 + sin x; g (x ) = x 4 + 2x 2 − 3.

Функция f (x ) — это сумма двух элементарных функций, поэтому:

f ’(x ) = (x 2 + sin x )’ = (x 2)’ + (sin x )’ = 2x + cos x;

Аналогично рассуждаем для функции g (x ). Только там уже три слагаемых (с точки зрения алгебры):

g ’(x ) = (x 4 + 2x 2 − 3)’ = (x 4 + 2x 2 + (−3))’ = (x 4)’ + (2x 2)’ + (−3)’ = 4x 3 + 4x + 0 = 4x · (x 2 + 1).

Ответ:
f ’(x ) = 2x + cos x;
g ’(x ) = 4x · (x 2 + 1).

Производная произведения

Математика — наука логичная, поэтому многие считают, что если производная суммы равна сумме производных, то производная произведения strike ">равна произведению производных. А вот фиг вам! Производная произведения считается совсем по другой формуле. А именно:

(f · g ) ’ = f ’ · g + f · g

Формула несложная, но ее часто забывают. И не только школьники, но и студенты. Результат — неправильно решенные задачи.

Задача. Найти производные функций: f (x ) = x 3 · cos x; g (x ) = (x 2 + 7x − 7) · e x .

Функция f (x ) представляет собой произведение двух элементарных функций, поэтому все просто:

f ’(x ) = (x 3 · cos x )’ = (x 3)’ · cos x + x 3 · (cos x )’ = 3x 2 · cos x + x 3 · (− sin x ) = x 2 · (3cos x x · sin x )

У функции g (x ) первый множитель чуть посложней, но общая схема от этого не меняется. Очевидно, первый множитель функции g (x ) представляет собой многочлен, и его производная — это производная суммы. Имеем:

g ’(x ) = ((x 2 + 7x − 7) · e x )’ = (x 2 + 7x − 7)’ · e x + (x 2 + 7x − 7) · (e x )’ = (2x + 7) · e x + (x 2 + 7x − 7) · e x = e x · (2x + 7 + x 2 + 7x −7) = (x 2 + 9x ) · e x = x (x + 9) · e x .

Ответ:
f ’(x ) = x 2 · (3cos x x · sin x );
g ’(x ) = x (x + 9) · e x .

Обратите внимание, что на последнем шаге производная раскладывается на множители. Формально этого делать не нужно, однако большинство производных вычисляются не сами по себе, а чтобы исследовать функцию. А значит, дальше производная будет приравниваться к нулю, будут выясняться ее знаки и так далее. Для такого дела лучше иметь выражение, разложенное на множители.

Если есть две функции f (x ) и g (x ), причем g (x ) ≠ 0 на интересующем нас множестве, можно определить новую функцию h (x ) = f (x )/g (x ). Для такой функции тоже можно найти производную:

Неслабо, да? Откуда взялся минус? Почему g 2 ? А вот так! Это одна из самых сложных формул — без бутылки не разберешься. Поэтому лучше изучать ее на конкретных примерах.

Задача. Найти производные функций:

В числителе и знаменателе каждой дроби стоят элементарные функции, поэтому все, что нам нужно — это формула производной частного:


По традиции, разложим числитель на множители — это значительно упростит ответ:

Сложная функция — это не обязательно формула длиной в полкилометра. Например, достаточно взять функцию f (x ) = sin x и заменить переменную x , скажем, на x 2 + ln x . Получится f (x ) = sin (x 2 + ln x ) — это и есть сложная функция. У нее тоже есть производная, однако найти ее по правилам, рассмотренным выше, не получится.

Как быть? В таких случаях помогает замена переменной и формула производной сложной функции:

f ’(x ) = f ’(t ) · t ’, если x заменяется на t (x ).

Как правило, с пониманием этой формулы дело обстоит еще более печально, чем с производной частного. Поэтому ее тоже лучше объяснить на конкретных примерах, с подробным описанием каждого шага.

Задача. Найти производные функций: f (x ) = e 2x + 3 ; g (x ) = sin (x 2 + ln x )

Заметим, что если в функции f (x ) вместо выражения 2x + 3 будет просто x , то получится элементарная функция f (x ) = e x . Поэтому делаем замену: пусть 2x + 3 = t , f (x ) = f (t ) = e t . Ищем производную сложной функции по формуле:

f ’(x ) = f ’(t ) · t ’ = (e t )’ · t ’ = e t · t

А теперь — внимание! Выполняем обратную замену: t = 2x + 3. Получим:

f ’(x ) = e t · t ’ = e 2x + 3 · (2x + 3)’ = e 2x + 3 · 2 = 2 · e 2x + 3

Теперь разберемся с функцией g (x ). Очевидно, надо заменить x 2 + ln x = t . Имеем:

g ’(x ) = g ’(t ) · t ’ = (sin t )’ · t ’ = cos t · t

Обратная замена: t = x 2 + ln x . Тогда:

g ’(x ) = cos (x 2 + ln x ) · (x 2 + ln x )’ = cos (x 2 + ln x ) · (2x + 1/x ).

Вот и все! Как видно из последнего выражения, вся задача свелась к вычислению производной суммы.

Ответ:
f ’(x ) = 2 · e 2x + 3 ;
g ’(x ) = (2x + 1/x ) · cos (x 2 + ln x ).

Очень часто на своих уроках вместо термина «производная» я использую слово «штрих». Например, штрих от суммы равен сумме штрихов. Так понятнее? Ну, вот и хорошо.

Таким образом, вычисление производной сводится к избавлению от этих самых штрихов по правилам, рассмотренным выше. В качестве последнего примера вернемся к производной степени с рациональным показателем:

(x n )’ = n · x n − 1

Немногие знают, что в роли n вполне может выступать дробное число. Например, корень — это x 0,5 . А что, если под корнем будет стоять что-нибудь навороченное? Снова получится сложная функция — такие конструкции любят давать на контрольных работах и экзаменах.

Задача. Найти производную функции:

Для начала перепишем корень в виде степени с рациональным показателем:

f (x ) = (x 2 + 8x − 7) 0,5 .

Теперь делаем замену: пусть x 2 + 8x − 7 = t . Находим производную по формуле:

f ’(x ) = f ’(t ) · t ’ = (t 0,5)’ · t ’ = 0,5 · t −0,5 · t ’.

Делаем обратную замену: t = x 2 + 8x − 7. Имеем:

f ’(x ) = 0,5 · (x 2 + 8x − 7) −0,5 · (x 2 + 8x − 7)’ = 0,5 · (2x + 8) · (x 2 + 8x − 7) −0,5 .

Наконец, возвращаемся к корням:

Решать физические задачи или примеры по математике совершенно невозможно без знаний о производной и методах ее вычисления. Производная - одно из важнейших понятий математического анализа. Этой фундаментальной теме мы и решили посвятить сегодняшнюю статью. Что такое производная, каков ее физический и геометрический смысл, как посчитать производную функции? Все эти вопросы можно объединить в один: как понять производную?

Геометрический и физический смысл производной

Пусть есть функция f(x) , заданная в некотором интервале (a, b) . Точки х и х0 принадлежат этому интервалу. При изменении х меняется и сама функция. Изменение аргумента – разность его значений х-х0 . Эта разность записывается как дельта икс и называется приращением аргумента. Изменением или приращением функции называется разность значений функции в двух точках. Определение производной:

Производная функции в точке – предел отношения приращения функции в данной точке к приращению аргумента, когда последнее стремится к нулю.

Иначе это можно записать так:

Какой смысл в нахождении такого предела? А вот какой:

производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.


Физический смысл производной: производная пути по времени равна скорости прямолинейного движения.

Действительно, еще со школьных времен всем известно, что скорость – это частное пути x=f(t) и времени t . Средняя скорость за некоторый промежуток времени:

Чтобы узнать скорость движения в момент времени t0 нужно вычислить предел:

Правило первое: выносим константу

Константу можно вынести за знак производной. Более того - это нужно делать. При решении примеров по математике возьмите за правило - если можете упростить выражение, обязательно упрощайте .

Пример. Вычислим производную:

Правило второе: производная суммы функций

Производная суммы двух функций равна сумме производных этих функций. То же самое справедливо и для производной разности функций.

Не будем приводить доказательство этой теоремы, а лучше рассмотрим практический пример.

Найти производную функции:

Правило третье: производная произведения функций

Производная произведения двух дифференцируемых функций вычисляется по формуле:

Пример: найти производную функции:

Решение:

Здесь важно сказать о вычислении производных сложных функций. Производная сложной функции равна произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной.

В вышеуказанном примере мы встречаем выражение:

В данном случае промежуточный аргумент – 8х в пятой степени. Для того, чтобы вычислить производную такого выражения сначала считаем производную внешней функции по промежуточному аргументу, а потом умножаем на производную непосредственно самого промежуточного аргумента по независимой переменной.

Правило четвертое: производная частного двух функций

Формула для определения производной от частного двух функций:

Мы постарались рассказать о производных для чайников с нуля. Эта тема не так проста, как кажется, поэтому предупреждаем: в примерах часто встречаются ловушки, так что будьте внимательны при вычислении производных.

С любым вопросом по этой и другим темам вы можете обратиться в студенческий сервис . За короткий срок мы поможем решить самую сложную контрольную и разобраться с заданиями, даже если вы никогда раньше не занимались вычислением производных.

Геометрический смысл производной

ОПРЕДЕЛЕНИЕ КАСАТЕЛЬНОЙ К КРИВОЙ

Касательной к кривой y=ƒ(x) в точке М называется предельное положение секущей, проведенной через точку М и соседнюю с ней точку М 1 кривой, при условии, что точка М 1 неограниченно приближается вдоль кривой к точке М .

ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ПРОИЗВОДНОЙ

Производная функции y=ƒ(x) в точке х 0 численно равна тангенсу угла наклона к оси Ох касательной, проведенной к кривой y=ƒ(x) в точке М (х 0 ; ƒ(x 0)).

ВИЗНАЧЕННЯ ДОТИЧНОЇ ДО КРИВОЇ

Дотичною до кривої y=ƒ(x) в точці М називається граничне положення січної, проведеної через точку М і сусідню з нею точку М 1 кривої, за умови, що точка М 1 необмежено наближається вздовж кривої до точки М .

ГЕОМЕТРИЧНИЙ ЗМІСТ ПОХІДНОЇ

Похідна функції y=ƒ(x) в точці х 0 чисельно дорівнює тангенсу кута нахилу до осі Ох дотичної, проведеної до кривої y=ƒ(x) в точці М (х 0 ; ƒ(x 0)).

Практический смысл производной

Рассмотрим, что практически означает величина, найденная нами как производная от некоторой функции.

Прежде всего, производная - это основное понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке.

Что такое "скорость изменения"? Представим себе функцию f(x) = 5 . Вне зависимости от значения аргумента (х) ее значение никак не изменяется. То есть, скорость ее изменения равна нулю.

Теперь рассмотрим функцию f(x) = x . Производная х равна единице. Действительно, легко заметить, что на каждое изменение аргумента (х) на единицу, значение функции прирастает также на единицу.

С точки зрения полученной информации теперь посмотрим в таблицу производных простых функций . Исходя из этого сразу же становится понятен физический смысл нахождения производной функции. Такое понимание должно облегчить решение практических задач.

Соответственно, если производная показывает скорость изменения функции, то двойная производная показывает ускорение.

2080.1947

В продолжение темы:
Из Бумаги

Открытка, как сердечко, изготовленная своими руками. Фотографии готовых открыток. Открытка, как сердечко, изготовленная своими руками. Фотографии готовых открыток....

Новые статьи
/
Популярные