Пределы где х стремится к бесконечности. Значение слова «предел. Конечные пределы функции в конечных точках

Пусть функция у=ƒ (х) определена в некоторой окрестности точки х о, кроме, быть может, самой точки х о.

Сформулируем два, эквивалентных между собой, определения предела функции в точке.

Определение 1 (на «языке последовательностей», или по Гейне).

Число А называется пределом функции у=ƒ(х) в топке x 0 (или при х® х о), если для любой последовательности допустимых значений аргумента x n , n є N (x n ¹ x 0), сходящейся к х о последовательность соответствующих значений функции ƒ(х n), n є N, сходится к числу А

В этом случае пишут
или ƒ(х)->А при х→х о. Геометрический смысл предела функции: означает, что для всех точек х, достаточно близких к точке х о, соответствующие значения функции как угодно мало отличаются от числа А.

Определение 2 (на «языке ε», или по Коши).

Число А называется пределом функции в точке х о (или при х→х о), если для любого положительного ε найдется такое положительное число δ, что для все х¹ х о, удовлетворяющих неравенству |х-х о |<δ, выполняется неравенство |ƒ(х)-А|<ε.

Геометрический смысл предела функции:

если для любой ε-окрестности точки А найдется такая δ-окрестность точки х о, что для всех х¹ хо из етой δ-окрестность соответствующие значения функции ƒ(х) лежат в ε-окрестности точки А. Иными словами, точки графика функции у=ƒ(х) лежат внутри полосы шириной 2ε, ограниченной прямыми у=А+ ε , у=А-ε (см. рис. 110). Очевидно, что величина δ зависит от выбора ε, поэтому пишут δ=δ(ε).

<< Пример 16.1

Доказать, что

Решение: Возьмем произвольное ε>0, найдем δ=δ(ε)>0 такое, что для всех х, удовлетворяющих неравенству |х-3| < δ, выполняется неравенство |(2х-1)-5|<ε, т. е. |х-3|<ε.

Взяв δ=ε/2, видим, что для всех х, удовлетворяющих неравенству |х-3|< δ, выполняется неравенство |(2х-1)-5|<ε. Следовательно, lim(2x-1)=5 при х –>3.

<< Пример 16.2

16.2. Односторонние пределы

В определении предела функции считается, что х стремится к x 0 любым способом: оставаясь меньшим, чем x 0 (слева от х 0), большим, чем х о (справа от х о), или колеблясь около точки x 0 .

Бывают случаи, когда способ приближения аргумента х к х о существенно влияет на значение придела функции. Поэтому вводят понятия односторонних пределов.

Число А 1 называется пределом функции у=ƒ(х) слева в точке х о, если для любого число ε>0 существует число δ=δ(ε)> 0 такое, что при х є (х 0 -δ;x o), выполняется неравенство |ƒ(х)-А|<ε. Предел слева записывают так: limƒ(х)=А при х–>х 0 -0 или коротко: ƒ(х о- 0)=А 1 (обозначение Дирихле) (см. рис. 111).

Аналогично определяется предел функции справа, запишем его с помощью символов:

Коротко предел справа обозначают ƒ(х о +0)=А.

Пределы функции слева и справа называются односторонними пределами. Очевидно, если существует , то существуют и оба односторонних предела, причем А=А 1 =А 2 .

Справедливо и обратное утверждение: если существуют оба предела ƒ(х 0 -0) и ƒ(х 0 +0) и они равны, то существует предел и А=ƒ(х 0 -0).

Если же А 1 ¹ А 2 , то етот придел не существует.

16.3. Предел функции при х ® ∞

Пусть функция у=ƒ(х) определена в промежутке (-∞;∞). Число А называется пределом функции ƒ(х) при х→, если для любого положительного числа ε существует такое число М=М()>0, что при всех х, удовлетворяющих неравенству |х|>М выполняется неравенство |ƒ(х)-А|<ε. Коротко это определение можно записать так:

Геометрический смысл этого определения таков: для " ε>0 $ М>0, что при х є(-∞; -М) или х є(М; +∞) соответствующие значения функции ƒ(х) попадают в ε-окрестность точки А, т. е. точки графика лежат в полосе шириной 2ε, ограниченной прямыми у=А+ε и у=А-ε (см. рис. 112).

16.4. Бесконечно большая функция (б.б.ф.)

Функция у=ƒ(х) называется бесконечно большой при х→х 0 , если для любого числа М>0 существует число δ=δ(М)>0, что для всех х, удовлетворяющих неравенству 0<|х-хо|<δ, выполняется неравенство |ƒ(х)|>М.

Например, функция у=1/(х-2) есть б.б.ф. при х->2.

Если ƒ(х) стремится к бесконечности при х→х о и принимает лишь положительные значения, то пишут

если лишь отрицательные значения, то

Функция у=ƒ(х), заданная на всей числовой прямой, называется бесконечно большой при х→∞, если для любого числа М>0 найдется такое число N=N(M)>0, что при всех х, удовлетворяющих неравенству |х|>N, выполняется неравенство |ƒ(х)|>М. Коротко:

Например, у=2х есть б.б.ф. при х→∞.

Отметим, что если аргумент х, стремясь к бесконечности, принимает лишь натуральные значения, т. е. хєN, то соответствующая б.б.ф. становится бесконечно большой последовательностью. Например, последовательность v n =n 2 +1, n є N, является бесконечно большой последовательностью. Очевидно, всякая б.б.ф. в окрестности точки х о является неограниченной в этой окрестности. Обратное утверждение неверно: неограниченная функция может и не быть б.б.ф. (Например, у=хsinх.)

Однако, если limƒ(х)=А при х→x 0 , где А - конечное число, то функция ƒ(х) ограничена в окрестности точки х о.

Действительно, из определения предела функции следует, что при х→ х 0 выполняется условие |ƒ(х)-А|<ε. Следовательно, А-ε<ƒ(х)<А+ε при х є (х о -ε; х о +ε), а это и означает, что функция ƒ (х) ограничена.

  • ПРЕДЕ́Л , -а, м.

    1. Край, конечная часть чего-л. Здесь крайний предел Пермской губернии. Мамин-Сибиряк, Дружки. Казалось, что нет и не будет предела этим лесам. Белов, Кануны. || перен. Конец, окончание, завершение чего-л. [Больной] не думал о своем близком конце, - о том пределе, к которому он несся с головокружительной быстротой. Гладков, Энергия. Она была для них старым, подходящим к пределу жизни человеком, которому оставалась последняя женская доля - материнская забота. Лавренев, Старуха. Только катастрофа могла бы поставить предел разладу Никиты с самим собою. Федин, Братья.

    2. мн. ч. (преде́лы , -ов ). Естественная или условная черта, являющаяся границей какой-л. территории; рубеж. На востоке он [Святослав] раздвинул пределы русской земли до тех границ, которые через пятьсот лет пришлось снова очерчивать Ивану Грозному. А. Н. Толстой, Откуда пошла русская земля. Оказавшись за пределами отчей земли, Шаляпин умер от ностальгии - тоски по родине. Грибачев, Березка и океан. || чего или какие. Местность, пространство, заключенные в какие-л. границы. Ашагинские леса приняли охотников в свои заповедные пределы. Тихонов, Двойная радуга. Этой ночью весеннею белой Соловьи славословьем грохочущим Оглашают лесные пределы. Пастернак, Белая ночь. Постепенно камерная музыка вышла за пределы особняков богатых и знатных людей и стала исполняться в концертных залах, где мы слушаем ее и в наши дни. Кабалевский, Про трех китов и про многое другое. || Трад.-поэт. Край, страна. А князь тем ядом напитал Свои послушливые стрелы И с ними гибель разослал К соседям в чуждые пределы. Пушкин, Анчар. Я помню, как солнце горело, на зимний взойдя небосвод, когда из далеких пределов в Москву прилетел самолет. Смеляков, Памяти Димитрова. || Промежуток времени, ограниченный какими-л. сроками (обычно в сочетании в пределах ). Говорят, что в Оренбург ездят по чугунке, и, может быть, я поеду, но все в пределах 14 дней. Л. Толстой, Письмо С. А. Толстой, 4 сент. 1876.

    3. обычно мн. ч. (преде́лы , -ов ) перен. Мера, граница чего-л.; рамки. В пределах приличия. Наконец, всякому терпению 365 есть же пределы. Писарев, Посмертные стихотворения Гейне. - Пока что я не выхожу за пределы предоставленных мне законом прав командующего флотом. Степанов, Порт-Артур. Познания о прошлом своего отечества у Федора Андреевича были весьма скромны, в основном, в пределах «краткого курса». Е. Носов, Не имей десять рублей. || Высшая степень чего-л. Предел мечтаний. Силы людей, физические и моральные, были доведены до предела изнеможения. В. Кожевников, Парашютист. Страна моя, прекрасен твой порыв Во всем достичь последнего предела! Винокуров, «Интернационал».

    4. Мат. Постоянная величина, к которой приближается переменная величина, зависящая от другой переменной величины, при определенном изменении последней. Предел числовой последовательности.

    На пределе - 1) в крайней степени напряжения. Нервы на пределе; 2) в крайней степени раздражения. [Галя:] Я сама его боюсь сегодня. Он на пределе. Погодин, Цветы живые.

Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. - 4-е изд., стер. - М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия):

Понятия пределов последовательностей и функций. Когда требуется найти предел последовательности, это записывают следующим образом: lim xn=a. В такой последовательности последовательности xn стремится к a, а n к бесконечности. Последовательность обычно представляют в виде ряда, например:
x1, x2, x3...,xm,...,xn... .
Последовательности подразделяются на возрастающие и убывающие. Например:
xn=n^2 - возрастающая последовательность
yn=1/n - последовательность
Так, например, предел последовательности xn=1/n^ :
lim 1/n^2=0

x→∞
Данный предел равен нулю, поскольку n→∞, а последовательность 1/n^2 стремится к нулю.

Обычно переменная величина x стремится к конечному пределу a, причем, x постоянно приближается к a, а величина a постоянна. Это записывают следующим образом: limx =a, при этом, n также может стремиться как к нулю, так и к бесконечности. Существуют бесконечные функции, для них предел стремится к бесконечности. В других случаях, когда, например, функцией замедление хода поезда, можно о пределе, стремящемся к нулю.
У пределов имеется ряд свойств. Как правило, любая функция имеет только один предел. Это главное свойство предела. Другие их свойства перечислены ниже:
* Предел суммы равен сумме пределов:
lim(x+y)=lim x+lim y
* Предел произведения равен произведению пределов:
lim(xy)=lim x*lim y
* Предел частного равен частному от пределов:
lim(x/y)=lim x/lim y
* Постоянный множитель выносят за знак предела:
lim(Cx)=C lim x
Если дана функция 1 /x, в которой x →∞, ее предел равен нулю. Если же x→0, предел такой функции равен ∞.
Для тригонометрических функций имеются исключения из этих правил. Так как функция sin x всегда стремится к единице, когда приближается к нулю, для нее справедливо тождество:
lim sin x/x=1

В ряде задач встречаются функции, при вычислении пределов которых возникает неопределенность - ситуация, при которой предел невозможно вычислить. Единственным выходом из такой ситуации становится применение правила Лопиталя. Существует два вида неопределенностей:
* неопределенность вида 0/0
* неопределенность вида ∞/∞
К примеру, дан предел следующего вида: lim f(x)/l(x), причем, f(x0)=l(x0)=0. В таком случае, возникает неопределенность вида 0/0. Для решения такой задачи обе функции подвергают дифференцированию, после чего находят предел результата. Для неопределенностей вида 0/0 предел равен:
lim f(x)/l(x)=lim f"(x)/l"(x) (при x→0)
Это же правило справедливо и для неопределенностей типа ∞/∞. Но в этом случае справедливо следующее равенство: f(x)=l(x)=∞
С помощью правила Лопиталя можно находить значения любых пределов, в которых фигурируют неопределенности. Обязательное условие при

том - отсутствие ошибок при нахождении производных. Так, например, производная функции (x^2)" равна 2x. Отсюда можно сделать вывод, что:
f"(x)=nx^(n-1)

Урок и презентация на тему: "Предел функции на бесконечности"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
Решаем задачи по геометрии. Интерактивные задания на построение для 7-10 классов
Решаем задачи по геометрии. Интерактивные задания на построение в пространстве для 10 и 11 классов

Что будем изучать:

1. Что такое Бесконечность?

5. Свойства. 6. Примеры.

Ребята, давайте посмотрим, что такое предел функции на бесконечности?
А, что такое бесконечность?
Бесконечность - используется для характеристики безграничных, беспредельных, неисчерпаемых предметов и явлений, в нашем случае характеристика чисел.

Бесконечность –сколь угодно большое(малое), безграничное число.
Если рассмотреть координатную плоскость то ось абсцисс(ординат) уходит на бесконечность, если ее безгранично продолжать влево или вправо(вниз или вверх).

Теперь давайте перейдем к пределу функции на бесконечности:
Пусть у нас есть функция y=f(x), область определения нашей функции содержит луч , и пусть прямая y=b является горизонтальной асимптотой графика функции y=f(x), запишем все это на математическом языке:

Так же наши соотношения могут выполняться одновременно:

Тогда принято записывать как:

Предел функции y=f(x) при x стремящимся к бесконечности равен b

Примеры

Построить график функции y=f(x), такой что:
1) Область определения – множество действительных чисел.
2) f(x)- непрерывная функция
3) 4) Решение: Нам надо построить непрерывную функцию на (-∞; +∞). Покажем пару примеров нашей функции.

Основные свойства

Для вычисления предела на бесконечности пользуются несколькими

1) Для любого натурально числа m справедливо следующее соотношение:

2) Если то:
а) Предел суммы равен сумме пределов:

Б) Предел произведения равен произведению пределов:

в) Предел частного равен частному пределов:


г) Постоянный множитель можно вынести за знак предела:

Пример 1.

Найти: Решение: Разделим числитель и знаменатель дроби на x. Воспользуемся свойством предел частного равен частному пределов:

Ребята, вспомните предел числовой последовательности.

Получим:

Пример 2.

Найти предел функции y=f(x), при x стремящимся к бесконечности.
Решение.

Теория пределов – это один из разделов математического анализа. Вопрос решения пределов является достаточно обширным, поскольку существуют десятки приемов решений пределов различных видов. Существуют десятки нюансов и хитростей, позволяющих решить тот или иной предел. Тем не менее, мы все-таки попробуем разобраться в основных типах пределов, которые наиболее часто встречаются на практике.

Начнем с самого понятия предела. Но сначала краткая историческая справка. Жил-был в 19 веке француз Огюстен Луи Коши, который дал строгие определения многим понятиям матана и заложил его основы. Надо сказать, этот уважаемый математик снился, снится и будет сниться в кошмарных снах всем студентам физико-математических факультетов, так как доказал огромное количество теорем математического анализа, причём одна теорема убойнее другой. В этой связи мы пока не будем рассматривать определение предела по Коши , а попытаемся сделать две вещи:

1. Понять, что такое предел.
2. Научиться решать основные типы пределов.

Прошу прощения за некоторую ненаучность объяснений, важно чтобы материал был понятен даже чайнику, что, собственно, и является задачей проекта.

Итак, что же такое предел?

А сразу пример, чего бабушку лохматить….

Любой предел состоит из трех частей :

1) Всем известного значка предела .
2) Записи под значком предела, в данном случае . Запись читается «икс стремится к единице». Чаще всего – именно , хотя вместо «икса» на практике встречаются и другие переменные. В практических заданиях на месте единицы может находиться совершенно любое число, а также бесконечность ().
3) Функции под знаком предела, в данном случае .

Сама запись читается так: «предел функции при икс стремящемся к единице».

Разберем следующий важный вопрос – а что значит выражение «икс стремится к единице»? И что вообще такое «стремится»?
Понятие предела – это понятие, если так можно сказать, динамическое . Построим последовательность: сначала , затем , , …, , ….
То есть выражение «икс стремится к единице» следует понимать так – «икс» последовательно принимает значения, которые бесконечно близко приближаются к единице и практически с ней совпадают .

Как решить вышерассмотренный пример? Исходя из вышесказанного, нужно просто подставить единицу в функцию, стоящую под знаком предела:

Итак, первое правило: Когда дан любой предел, сначала просто пытаемся подставить число в функцию .

Мы рассмотрели простейший предел, но и такие встречаются на практике, причем, не так уж редко!

Пример с бесконечностью:

Разбираемся, что такое ? Это тот случай, когда неограниченно возрастает, то есть: сначала , потом , потом , затем и так далее до бесконечности.

А что в это время происходит с функцией ?
, , , …

Итак: если , то функция стремится к минус бесконечности :

Грубо говоря, согласно нашему первому правилу, мы вместо «икса» подставляем в функцию бесконечность и получаем ответ .

Еще один пример с бесконечностью:

Опять начинаем увеличивать до бесконечности и смотрим на поведение функции:

Вывод: при функция неограниченно возрастает :

И еще серия примеров:

Пожалуйста, попытайтесь самостоятельно мысленно проанализировать нижеследующее и запомните простейшие виды пределов:

, , , , , , , , ,
Если где-нибудь есть сомнения, то можете взять в руки калькулятор и немного потренироваться.
В том случае, если , попробуйте построить последовательность , , . Если , то , , .

! Примечание : строго говоря, такой подход с построением последовательностей из нескольких чисел некорректен, но для понимания простейших примеров вполне подойдет.

Также обратите внимание на следующую вещь. Даже если дан предел с большим числом вверху, да хоть с миллионом: , то все равно , так как рано или поздно «икс» начнёт принимать такие гигантские значения, что миллион по сравнению с ними будет самым настоящим микробом .

Что нужно запомнить и понять из вышесказанного?

1) Когда дан любой предел, сначала просто пытаемся подставить число в функцию.

2) Вы должны понимать и сразу решать простейшие пределы, такие как , , и т.д.

Более того, у предела есть очень хороший геометрический смысл. Для лучшего понимания темы рекомендую ознакомиться с методическим материалом Графики и свойства элементарных функций . После прочтения этой статьи вы не только окончательно поймете, что такое предел, но и познакомитесь с интересными случаями, когда предела функции вообще не существует !

На практике, к сожалению, подарков немного. А поэтому переходим к рассмотрению более сложных пределов. Кстати, по этой теме есть интенсивный курс в pdf-формате, который особенно полезен, если у Вас ОЧЕНЬ мало времени на подготовку. Но материалы сайта, разумеется, не хуже:


Сейчас мы рассмотрим группу пределов, когда , а функция представляет собой дробь, в числителе и знаменателе которой находятся многочлены

Пример:

Вычислить предел

Согласно нашему правилу попытаемся подставить бесконечность в функцию. Что у нас получается вверху? Бесконечность. А что получается внизу? Тоже бесконечность. Таким образом, у нас есть так называемая неопределенность вида . Можно было бы подумать, что , и ответ готов, но в общем случае это вовсе не так, и нужно применить некоторый прием решения, который мы сейчас и рассмотрим.

Как решать пределы данного типа?

Сначала мы смотрим на числитель и находим в старшей степени:

Старшая степень в числителе равна двум.

Теперь смотрим на знаменатель и тоже находим в старшей степени:

Старшая степень знаменателя равна двум.

Затем мы выбираем самую старшую степень числителя и знаменателя: в данном примере они совпадают и равны двойке.

Итак, метод решения следующий: для того, чтобы раскрыть неопределенность необходимо разделить числитель и знаменатель на в старшей степени .



Вот оно как, ответ , а вовсе не бесконечность.

Что принципиально важно в оформлении решения?

Во-первых, указываем неопределенность, если она есть.

Во-вторых, желательно прервать решение для промежуточных объяснений. Я обычно использую знак , он не несет никакого математического смысла, а обозначает, что решение прервано для промежуточного объяснения.

В-третьих, в пределе желательно помечать, что и куда стремится. Когда работа оформляется от руки, удобнее это сделать так:

Для пометок лучше использовать простой карандаш.

Конечно, можно ничего этого не делать, но тогда, возможно, преподаватель отметит недочеты в решении либо начнет задавать дополнительные вопросы по заданию. А оно Вам надо?

Пример 2

Найти предел
Снова в числителе и знаменателе находим в старшей степени:

Максимальная степень в числителе: 3
Максимальная степень в знаменателе: 4
Выбираем наибольшее значение, в данном случае четверку.
Согласно нашему алгоритму, для раскрытия неопределенности делим числитель и знаменатель на .
Полное оформление задания может выглядеть так:

Разделим числитель и знаменатель на

Пример 3

Найти предел
Максимальная степень «икса» в числителе: 2
Максимальная степень «икса» в знаменателе: 1 ( можно записать как )
Для раскрытия неопределенности необходимо разделить числитель и знаменатель на . Чистовой вариант решения может выглядеть так:

Разделим числитель и знаменатель на

Под записью подразумевается не деление на ноль (делить на ноль нельзя), а деление на бесконечно малое число.

Таким образом, при раскрытии неопределенности вида у нас может получиться конечное число , ноль или бесконечность.


Пределы с неопределенностью вида и метод их решения

Следующая группа пределов чем-то похожа на только что рассмотренные пределы: в числителе и знаменателе находятся многочлены, но «икс» стремится уже не к бесконечности, а к конечному числу .

Пример 4

Решить предел
Сначала попробуем подставить -1 в дробь:

В данном случае получена так называемая неопределенность .

Общее правило : если в числителе и знаменателе находятся многочлены, и имеется неопределенности вида , то для ее раскрытия нужно разложить числитель и знаменатель на множители .

Для этого чаще всего нужно решить квадратное уравнение и (или) использовать формулы сокращенного умножения. Если данные вещи позабылись, тогда посетите страницу Математические формулы и таблицы и ознакомьтесь с методическим материалом Горячие формулы школьного курса математики . Кстати его лучше всего распечатать, требуется очень часто, да и информация с бумаги усваивается лучше.

Итак, решаем наш предел

Разложим числитель и знаменатель на множители

Для того чтобы разложить числитель на множители, нужно решить квадратное уравнение:

Сначала находим дискриминант:

И квадратный корень из него: .

В случае если дискриминант большой, например 361, используем калькулятор, функция извлечения квадратного корня есть на самом простом калькуляторе.

! Если корень не извлекается нацело (получается дробное число с запятой), очень вероятно, что дискриминант вычислен неверно либо в задании опечатка.

Далее находим корни:

Таким образом:

Всё. Числитель на множители разложен.

Знаменатель. Знаменатель уже является простейшим множителем, и упростить его никак нельзя.

Очевидно, что можно сократить на :

Теперь и подставляем -1 в выражение, которое осталось под знаком предела:

Естественно, в контрольной работе, на зачете, экзамене так подробно решение никогда не расписывают. В чистовом варианте оформление должно выглядеть примерно так:

Разложим числитель на множители.





Пример 5

Вычислить предел

Сначала «чистовой» вариант решения

Разложим числитель и знаменатель на множители.

Числитель:
Знаменатель:



,

Что важного в данном примере?
Во-первых, Вы должны хорошо понимать, как раскрыт числитель, сначала мы вынесли за скобку 2, а затем использовали формулу разности квадратов. Уж эту-то формулу нужно знать и видеть.

Рекомендация: Если в пределе (практически любого типа) можно вынести число за скобку, то всегда это делаем.
Более того, такие числа целесообразно выносить за значок предела . Зачем? Да просто чтобы они не мешались под ногами. Главное, потом эти числа не потерять по ходу решения.

Обратите внимание, что на заключительном этапе решения я вынес за значок предела двойку, а затем – минус.

! Важно
В ходе решения фрагмент типа встречается очень часто. Сокращать такую дробь нельзя . Сначала нужно поменять знак у числителя или у знаменателя (вынести -1 за скобки).
, то есть появляется знак «минус», который при вычислении предела учитывается и терять его совсем не нужно.

Вообще, я заметил, что чаще всего в нахождении пределов данного типа приходится решать два квадратных уравнения, то есть и в числителе и в знаменателе находятся квадратные трехчлены.


Метод умножения числителя и знаменателя на сопряженное выражение

Продолжаем рассматривать неопределенность вида

Следующий тип пределов похож на предыдущий тип. Единственное, помимо многочленов, у нас добавятся корни.

Пример 6

Найти предел

Начинаем решать.

Сначала пробуем подставить 3 в выражение под знаком предела
Еще раз повторяю – это первое, что нужно выполнять для ЛЮБОГО предела . Данное действие обычно проводится мысленно или на черновике.

Получена неопределенность вида , которую нужно устранять.

Как Вы, наверное, заметили, у нас в числителе находится разность корней. А от корней в математике принято, по возможности, избавляться. Зачем? А без них жизнь проще.

В продолжение темы:
Из Бумаги

Открытка, как сердечко, изготовленная своими руками. Фотографии готовых открыток. Открытка, как сердечко, изготовленная своими руками. Фотографии готовых открыток....

Новые статьи
/
Популярные