Основными типами взаимодействия неаллельных генов являются. Взаимодействие аллельных и неаллельных генов. Полное и неполное доминирование

Многочисленные опыты подтвердили правильность установленных Менделем закономерностей. Вместе с тем, появились факты, показывающие, что полученные Менделем числовые соотношения при расщеплении гибридного поколения соблюдались не всегда. Это указывало на то, что взаимоотношения между генами и признаками носят более сложный характер. Выяснилось: один и тот же ген может оказывать влияние на развитие нескольких признаков; один и тот же признак может развиваться под влиянием многих генов .

Следует отметить, что взаимодействие генов имеет биохимическую природу, то есть взаимодействуют друг с другом не гены, а их продукты. Продуктом эукариотического гена может быть или полипептид, или тРНК, или рРНК.

ВИДЫ ВЗАИМОДЕЙСТВИЯ АЛЛЕЛЬНЫХ ГЕНОВ

Различают полное доминирование, неполное доминирование, кодоминирование, аллельное исключение.

Аллельными генами называются гены, расположенные в идентичных локусах гомологичных хромосом. Ген может иметь одну, две и более молекулярных форм. Появление второй и последующих молекулярных форм является следствием мутации гена. Если ген имеет три и более молекулярных форм, говорят о множественном аллелизме . Из всего множества молекулярных форм у одного организма могут присутствовать только две, что объясняется парностью хромосом.

Полное доминирование

Полное доминирование — это вид взаимодействия аллельных генов, при котором фенотип гетерозигот не отличается от фенотипа гомозигот по доминанте, то есть в фенотипе гетерозигот присутствует продукт доминантного гена. Полное доминирование широко распространено в природе, имеет место при наследовании, например, окраски и формы семян гороха, цвета глаз и цвета волос у человека, резус-антигена и мн. др.

Наличие резус-антигена (резус-фактора) эритроцитов обусловливается доминантным геном Rh . То есть генотип резус-положительного человека может быть двух видов: или RhRh , или Rhrh ; генотип резус-отрицательного человека — rhrh . Если, например, мать — резус-отрицательная, а отец резус-положительный и гетерозиготен по этому признаку, то при данном типе брака с одинаковой вероятностью может родиться как резус-положительный, так и резус-отрицательный ребенок.

Между резус-положительным плодом и резус-отрицательной матерью может возникнуть резус-конфликт.

Так называется вид взаимодействия аллельных генов, при котором фенотип гетерозигот отличается как от фенотипа гомозигот по доминанте, так и от фенотипа гомозигот по рецессиву и имеет среднее (промежуточное) значение между ними. Имеет место при наследовании окраски околоцветника ночной красавицы, львиного зева, окраски шерсти морских свинок и пр.

Сам Мендель столкнулся с неполным доминированием, когда скрещивал крупнолистный сорт гороха с мелколистным. Гибриды первого поколения не повторяли признак ни одного из родительских растений, они имели листья средней величины.

При скрещивании гомозиготных красноплодных и белоплодных сортов земляники все первое поколение гибридов имеет розовые плоды. При скрещивании этих гибридов друг с другом получаем: по фенотипу — 1/4 красноплодных, 2/4 розовоплодных и 1/4 белоплодных растений, по генотипу — 1/4 АА , 1/2 Аа , 1/4 аа (и по фенотипу, и по генотипу соотношение 1:2:1). Соответствие расщепления по генотипу расщеплению по фенотипу является характерным при неполном доминировании, так как гетерозиготы фенотипически отличаются от гомозигот.

Кодоминирование

Кодоминирование — вид взаимодействия аллельных генов, при котором фенотип гетерозигот отличается как от фенотипа гомозигот по доминанте, так и от фенотипа гомозигот по рецессиву, и в фенотипе гетерозигот присутствуют продукты обоих генов. Имеет место при формировании, например, IV группы крови системы (АВ0) у человека.

Для того чтобы представить, как происходит наследование групп крови у человека, можно посмотреть, рождение детей с какой группой крови возможно у родителей, имеющих один — вторую, другой — третью группы крови и являющихся гетерозиготными по этому признаку.

Р ♀I A i 0
II (A)
× ♂I B i 0
III (B)
Типы гамет I A i 0 I B i 0
F i 0 i 0
I (0)
25%
I A i 0
II (A)
25%
I B i 0
III (B)
25%
I A I B
IV (AB)
25%

Аллельное исключение

Аллельным исключением называется отсутствие или инактивация одного из пары генов; в этом случае в фенотипе присутствует продукт другого гена (гемизиготность, делеция, гетерохроматизация участка хромосомы, в котором находится нужный ген).

ВИДЫ ВЗАИМОДЕЙСТВИЯ НЕАЛЛЕЛЬНЫХ ГЕНОВ

Комплементарность, эпистаз, полимерия.

Неаллельные гены — гены, расположенные или в неидентичных локусах гомологичных хромосом, или в разных парах гомологичных хромосом.

С накоплением научного опыта появлялись противоречия третьему закону Менделя о независимом наследовании. Потомство делилось по фенотипу в соотношении 15:1 или 9:7, а не 9:16 по Менделю. Это свидетельствует об определённых взаимоотношениях неаллельных генов.

Механизм

Неаллельные гены располагаются в разных участках хромосом и кодируют разные виды белков. Гены непосредственно не влияют друг на друга, поэтому взаимодействие происходит в цитоплазме на уровне белков, которые кодируются определёнными генами.

Рис. 1. Неаллельные гены.

Механизм взаимодействия может протекать по одному из трёх сценариев:

  • одновременное действие двух ферментов, которые кодируют два неаллельных гена;
  • один неаллельный ген образует белок, который влияет на работу другого неаллельного гена (подавляет или активирует);
  • два белка, закодированные двумя неаллельными генами, действуют на один процесс, усиливая или восстанавливая один и тот же признак.

Один ген может отвечать за несколько фенотипических признаков или несколько генов могут обуславливать один признак.

Виды

Существует несколько видов взаимодействия неаллельных генов, главные из которых подробно описаны в таблице.

Рис. 2. Комплементарность.

Вид

Описание

Пример

Признак, обусловленный двумя разными генами, проявляется только при сочетании двух доминантных аллелей. Такие гены называются комплементарными. Признак не формируется при отсутствии одного гена. Расщепление фенотипических признаков в F2 происходит в соотношении 9:7, 9:6:1, 9:3:4

Скрещивание душистого горошка с белыми цветками. В F1 все потомки имеют пурпурные цветки, т.к. сочетание доминантных генов А и В кодируют антоциан, придающий пурпурную окраску. По отдельности гены не образуют пурпур. В F2 происходит расщепление - 9 пурпурных (АВ), 7 белых (3 - Abb, 3 - aaB, 1 - aabb)

Одна пара генов подавляет другую, не давая проявиться фенотипическому признаку. Подавляющий ген называется эпистатичным (ген-супрессор или ингибитор), подавляемый - гипостатичным. Ингибитор обозначается буквой I, i. Эпистаз может быть доминантным - подавление доминантным геном (I>B, b) и рецессивным - подавление рецессивным геном (i>B,b). При доминировании происходит расщепление генов в соотношении 7:6:3, 12:3:1, 13:3, при рецессивном проявлении - 9:3:4, 9:7, 13:3

Окраска овсяного зерна: А - чёрный цвет, В - серый цвет. В F1 все зёрна будут чёрного цвета, если ген А эпистатичен (AaBB или IiBB). В F2 произойдёт расщепление по цвету зерна - 12 чёрных, 3 серых и 1 белое. У 12 растений обязательно присутствует I-ген, у 3 он будет в рецессивном состоянии - i. Одному растению достанутся гены iibb (отсутствие чёрной и серой окраски), поэтому он будет белым

Полимерия

Количественные или мерные признаки, которые нельзя чётко разделить по фенотипу (рост, количество молока, жирность скота), определяются совокупностью генов. Выделяют кумулятивный и некумулятивный виды. В первом случае проявление признака зависит от суммы действий генов (чем больше доминантных генов, тем ярче признак). Во втором случае признак проявляется при доминантном гене, количество генов на проявление фенотипа не влияет. При кумулятивном виде в F2 наблюдается расщепление в соотношении 1:4:6:4:1, при некумулятивном - 15:1. Обозначают полимерные гены одной буквой (А, а, В, b и т.д.), а аллели - цифрой. Например, А1а1А2а2

Цвет кожи человека зависит от действия четырёх генов: А1А1А2А2 - чёрный цвет, а1а1а2а2 - белый, А1А1А2а2, А1а1А2А2, А1а1А2а2, А1А1а2а2, а1а1А2А2, А1а1а2а2, а1а1А2а2 - промежуточные значения от тёмного (почти чёрный) до светлого (почти белый) оттенка

Рис. 3. Эпистаз.

Множественное действие генов называется плейотропией. Действие одного гена, как правило, обусловлено взаимодействием с другими генами. Таким эффектом обладает большинство генов, поэтому генотип представляет собой систему взаимодействующих генов.

ТОП-4 статьи которые читают вместе с этой

Что мы узнали?

Узнали кратко о типах взаимодействия неаллельных генов. Существует три типа взаимодействия - комплементарность, эпистаз, полимерия. Для комплементарного проявления признака необходимо наличие двух доминантных генов. Для эпистаза характерно подавление одним геном действие второго гена. Полимерия - взаимодействие совокупности генов. Взаимодействие множества генов называется плейотропией.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 90.

Аллельные гены – гены, расположенные в одинаковых участках гомологичных хромосом и контролирующие развитие вариаций одного признака.

Неаллельные гены – расположены в разных участках гомологичных хромосом, контролируют развитие разных признаков.

  1. Понятие о действии генов.

Ген – участок молекулы ДНК или РНК, кодирующий последовательность нуклеотидов в тРНК и рРНК или последовательность аминокислот в полипептиде.

Характеристики действия генов:

    Ген дискретен

    Ген специфичен – каждый ген отвечает за синтез строго определенного вещества

    Ген действует градуально

    Плейотропное действие – 1 ген действует на изменение или проявление нескольких признаков (1910 Плате) фенилкетонурия, синдром Марфана

    Полимерное действие – для экспрессивности признака нужно несколько генов (1908 Нильсон-Эле)

    Гены взаимодействуют между собой через белковые продукты, детерминированные ими

    На проявление генов оказывают влияние факторы среды

  1. Перечислите типы взаимодействия между аллельными и неаллельными генами.

Между аллельными:

    Полное доминирование

    Неполное доминирование

    Кодоминирование

    Сверхдоминирование

Между неаллельными: (признак или свойства детерминируются двумя или более неаллельными генами, которые взаимодействуют между собой. Хотя и здесь взаимодействие условно, потому что взаимодействуют не гены, а контролируемые ими продукты. При этом имеет место отклонение от менделеевских закономерностей расщепления).

    Комплиментарность

  • Полимерия

  1. Сущность полного доминирования. Примеры.

Полное доминирование – тип взаимодействия аллельных генов, при котором доминантный ген (А) полностью подавляет действие рецессивного гена (а) (веснушки)

  1. Неполное доминирование. Примеры.

Неполное доминирование – тип взаимодействия аллельных генов, при котором доминантный аллель не полностью подавляет действие рецессивного аллеля, формируя признак с промежуточной степенью вырожденности (цвет глаз, форма волос)

  1. Сверхдомининрование как основа гетерозиса. Примеры.

Сверхдоминирование – тип взаимодействия аллельных генов, при котором ген, находящийся в гетерозиготном состоянии имеет большее фенотипическое проявление признака, чем гомозиготный.

Серповидно-клеточная анемия. А – гемоглобинA, а – гемоглобинS. АА – 100% нормальные эритроциты, больше подвержены малярии; аа – 100% мутированные (умирают), Аа – 50% мутированных, практически не подвержены малярии т.к. уже поражены

  1. Кодоминирование и его сущность. Примеры.

Кодоминирование – тип взаимодействия аллельных генов, при котором в детерминации признака участвуют несколько аллелей гена и происходит формирование нового признака. Один аллельный ген дополняет действие другого аллельного гена, новый признак отличается от родительских (группы крови АВО).

Явление независимого друг от друга прояв­ления обоих аллелей в фенотипе гетерозиготы, иными слова­ми - отсутствие доминантно-рецессивных отношений между аллелями. Наиболее известный пример - взаимодействие алле­лей, определяющих четвертую группу крови человека (АВ). Из­вестна множественная серия, состоящая из трех аллелей гена I, определяющего признак группы крови человека. Ген I отвечает за синтез ферментов, присоединяющих к белкам, находящимся на поверхности эритроцитов, определенные полисахариды. (Этими полисахаридами на поверхности эритроцитов как раз и определяется специфичность групп крови.) Аллели 1 А и 1 в коди­руют два разных фермента; аллель 1° не кодирует никакого. При этом аллель 1° рецессивен и по отношению к 1 А, и по отношению к I B , а между двумя последними нет доминантно-рецессивных отношений. Люди, имеющие четвертую группу крови, несут в своем генотипе два аллеля: 1 А и 1 B . Поскольку между этими дву­мя аллелями нет доминантно-рецессивных отношений, то в ор­ганизме таких людей синтезируются оба фермента и формирует­ся соответствующий фенотип - четвертая группа крови.

Взаимодействие аллельных генов и его типы

Изучая законы Г.Менделя, мы уже знакомились с основными типами взаимодействия аллельных генов. На основе ранее изученного материала заполните таблицу.

Таблица. Типы взаимодействия генов одной аллельной пары

Тип взаимодействия

Характер взаимодействия в
гетерозиготном состоянии

Формулы расщепления по фенотипу в F 2 и при анализирующем скрещивании

Примеры

Полное доминирование

Один аллель (доминантный) полностью подавляет действие другого (рецессивного) аллеля

Высокий рост растения доминирует над карликовостью; вьющиеся волосы – над прямыми; карие глаза – над голубыми и т. п.

Неполное доминирование

Действие каждого аллеля реализуется не полностью, вследствие чего проявляется промежуточный признак

Окраска цветков ночной красавицы; серповидноклеточная анемия; цистонурия и т.п.

Кодоминирование

Участие обоих аллелей в определении признака

IV группа крови (эритроциты этой группы крови имеют агглютиногены типа А и типа В )

Взаимодействие неаллельных генов

Исходя из законов Г.Менделя, можно прийти к заключению, что существует довольно прочная связь между геном и признаком, что генотип слагается из суммы независимо действующих генов, а фенотип – механическая совокупность отдельных признаков. Однако прямые и однозначные связи гена с признаком скорее исключение, чем правило. Развитие признака организма обычно находится под контролем многих генов, и признак является результатом взаимодействия неаллельных генов.

Простейший случай взаимодействия неаллельных генов – когда признак контролируется двумя парами аллелей. Рассмотрим некоторые примеры такого взаимодействия.

Комплементарное взаимодействие генов

Явление взаимодействия генов, при котором для проявления признака необходимо наличие двух неаллельных генов, называют комплементарностью (от лат. complementum – дополнение), а гены, необходимые для проявления признака, комплементарными , или дополнительными.

Рассмотрим различные варианты комплементарного взаимодействия генов.

Аллели второго гена проявляются только при наличии доминантного аллеля гена А . Окраска мышей зависит в простейшем случае от двух генов. Мыши с генотипом аа лишены пигмента и имеют белый цвет. При наличии доминантного аллеля А пигмент вырабатывается, и мышь как-то окрашена. Конкретный цвет определяется вторым геном. Его доминантный аллель С обусловливает серый цвет мыши, а рецессивный аллель с – черный цвет. Таким образом, если рассматривать гомозиготные варианты, генотип серых мышей – ААСС , черных – ААсс , белых – ааСС или аасс . При скрещивании серой мыши ААСС с белой аасс в первом поколении все получается по Менделю: все гибриды имеют серый цвет (это гетерозиготы с генотипом АаСс ). В F2, как легко проверить, получим 9/16 серых мышей, 3/16 черных и 4/16 белых.

Для проявления признака в генотипе должны присутствовать доминантные аллели двух разных генов. Примером такого комплементарного взаимодействия генов является наследование формы плода у тыквы. При наличии обоих доминантных аллелей плоды имеют дисковидную форму, при наличии одного (любого!) доминантного аллеля – сферическую, а при отсутствии доминантных аллелей – удлиненную.

Для проявления признака в генотипе должны присутствовать доминантные аллели двух разных генов, но каждый доминантный аллель в сочетании с рецессивными аллелями другой пары имеет самостоятельное фенотипическое проявление. Например, у кур гороховидная форма гребня определяется одним доминантным геном, розовидная – другим неаллельным ему, но тоже доминантным геном. Когда эти гены окажутся в одном генотипе, развивается ореховидная форма гребня. В случае если организм оказывается гомозиготным по обоим рецессивным генам, развивается простой листовидный гребень. При скрещивании дигибридов (все с ореховидным гребнем) во втором поколении происходит расщепление в отношении 9:3:3:1. Но здесь нельзя найти независимого расщепления каждого аллеля в отношении 3:1, так как во всех случаях совпадения в генотипе обоих доминантных генов их прямого действия не обнаруживается.

Таким образом, о комплементарном взаимодействии неаллельных генов говорят в том случае, когда два неаллельных гена дают новый признак, то есть имеет место новообразование.

Эпистатическое взаимодействие генов

Взаимодействие генов, при котором один ген подавляет действие другого, неаллельного первому, называется эпистазом (от греч. эпи – над и стазис – стоять), а гены, подавляющие действие других генов, называются генами-супрессорами , или генами-ингибиторами (от лат. inhiber – удерживать), или эпистатическими генами . Подавляемый ген называется гипостатическим .

Различают эпистаз доминантный и рецессивный.

Доминантный эпистаз связан с доминантным геном-ингибитором. Например, ген I обусловливает белый цвет плодов тыквы, при его наличии действие гена В не проявляется. При генотипе iiВВ или iiВb плоды тыквы имеют желтый цвет. Наконец, если оба гена представлены рецессивными аллелями, плоды тыквы имеют зеленый цвет. По этому же типу может наследоваться окраска шерсти собак, овец и других животных.

Рецессивный эпистаз обнаруживается тогда, когда проявление гена подавляется рецессивными аллелями другого гена. Этот вид эпистаза иллюстрируется наследованием окраски шерсти у домовых мышей. Окраска агути (рыжевато-серая) определяется доминантным геном А , его рецессивный аллель а дает черную окраску. Ген из неаллельной пары В способствует проявлению цветности, а ген b является супрессором и подавляет действие доминантного аллеля А и рецессивного а . Мыши с генотипом Аbb неотличимы по фенотипу от особей с генотипом ааbb – все белые.

Полимерное взаимодействие генов

Полимерия – тип взаимодействия неаллельных генов, при котором несколько пар неаллельных генов действуют на развитие одного признака. Такие гены называются полимерными (от греч. полис – много и мерос – часть). Их обозначают одной буквой, но с разными индексами, которые указывают на число аллельных пар в генотипе, обусловливающих развитие конкретного признака (А 1 А 1 А 2 А 2 ).

Различают два варианта полимерии: с суммирующим действием генов и без усиления генов друг другом.

Суммирующее действие полимерных генов. В этом случае степень проявления признака зависит от числа доминантных аллелей в генотипе особи. Так, красная окраска зерен пшеницы определяется двумя и более парами генов. Каждый из доминантных генов этих аллелей определяет красную окраску, рецессивные гены определяют белый цвет зерен. Один доминантный аллель дает не очень сильно окрашенные зерна. Если в генотипе присутствуют два доминантных аллеля, интенсивность окраски повышается. Лишь в том случае, когда организм оказывается гомозиготным по всем парам рецессивных генов, зерна не окрашены. Таким образом, при скрещивании дигибридов происходит расщепление в отношении 15 окрашенных к одному белому. Но из 15 окрашенных один будет иметь интенсивный красный цвет, т.к. содержит четыре доминантных аллеля, четыре будут окрашены несколько светлее, т.к. содержат в генотипах три доминантных аллеля и один рецессивный аллель, шесть – еще светлее с двумя доминантными и двумя рецессивными аллелями в генотипах, четыре – еще более светлые, т.к. имеют лишь один доминантный и три рецессивных гена, то есть истинное расщепление будет 1:4:6:4:1.

По данному варианту полимерии наследуются окраска кожи, рост и масса у человека. Подобный же механизм наследования характерен для многих количественных, в том числе и хозяйственно-ценных признаков: содержание сахара в корнеплодах свеклы, содержание витаминов в плодах и овощах, длина колоса злаков, длина початка кукурузы, плодовитость животных, молочность скота, яйценоскость кур и др.

Полимерные гены не усиливают друг друга. В этом случае расщепление в F 2 будет 15:1. Так, плоды пастушьей сумки могут быть треугольными (доминантный признак) и овальными (рецессив). Признак контролируется двумя парами полимерных генов. Если в генотипе растения имеется хотя бы один доминантный аллель из первой или второй пары полимерных генов, то форма плода у него будет треугольной (А 1 А 2 ; А 1 а 2 ; а 1 А 2 ). Овальную форму плодов будут иметь лишь те растения, у которых в генотипе нет ни одного доминантного аллеля – а 1 а 1 а 2 а 2 .

Таким образом, накопление определенных аллелей в генотипе может привести к изменению выраженности признаков.

Множественное действие генов

Часто ген оказывает действие не на один, а на ряд признаков организма. Явление, при котором один ген может влиять на формирование нескольких признаков организма, называется плейотропией (от греч. плеон – более многочисленный и тропос – поворот).

Существование этого явления отнюдь не противоречит классической концепции «один ген – один белок – один признак». Упрощенно влияние одного гена сразу на несколько признаков можно представить следующим образом. В результате считывания информации с гена образуется некий белок, который затем может участвовать в различных процессах, происходящих в организме, оказывая таким образом множественное действие. Например, у гороха бурая окраска кожуры семян и развитие пигмента в других частях растения, окраска цветков зависят от одного гена; у дрозофилы ген, обусловливающий белую окраску глаз, влияет на осветление окраски тела и изменение некоторых внутренних органов; у человека ген, отвечающий за рыжий цвет волос, одновременно определяет более светлую окраску кожи и появление веснушек. Синдром Марфана обусловлен аутосомным доминантным плейотропным геном и проявляется высоким ростом, удлинением костей пальцев рук и ног (паучьи пальцы), гиперподвижностью суставов, подвывихом хрусталика глаза, пороком сердца.

Такое множественное действие характерно для большинства генов. Однако не следует представлять, что плейотропный ген в равной степени влияет на каждый из признаков. Для абсолютного большинства генов с той или иной степенью плейотропии характерно более сильное влияние на один признак и значительно более слабое – на другой.

Генотип как целостная система

Факт расщепления в потомстве гибридов позволяет утверждать, что генотип слагается из отдельных элементов – генов, которые могут наследоваться независимо (дискретность генотипа ). В то же время генотип не может рассматриваться как простая механическая сумма отдельных генов. Генотип – это система взаимодействующих генов. Точнее, взаимодействуют не сами гены (участки ДНК), а образуемые на их основе генные продукты (РНК, а затем – белки). Поэтому в отдельных случаях действие разных генов относительно независимо, но, как правило, проявление признака есть результат взаимодействия продуктов разных генов.

Генотип любого организма представляет собой сложную целостную систему взаимодействующих генов. Эта целостность генотипа возникла исторически в процессе эволюции вида. В результате мутаций постоянно появляются новые гены, формируются новые хромосомы и даже новые геномы. Вновь возникшие гены могут сразу же взаимодействовать с уже имеющимися генами или модифицировать характер работы последних, даже будучи рецессивными, то есть, не проявляясь сами по себе.

Следовательно, у каждого вида растений и животных генотип проявляет себя как исторически сложившаяся к данному моменту целостная система.

II. Закрепление знаний

Обобщающая беседа по ходу изучения нового материала.

III. Домашнее задание

Изучить параграф учебника (связь между генами и признаками, типы взаимодействия аллельных и неаллельных генов, плейотропия, генотип как целостная система).

Решить задачи в конце параграфа учебника.

Генотип — не просто механический набор генов, это исторически сложившаяся система из взаимодействующих между собой генов. Точнее, взаимодействуют не сами гены (участки молекул ДНК), а образуемые на их основе продукты (РНК и белки).

Взаимодействовать могут как аллельные гены, так и неаллельные.

Типы взаимодействия генов
Тип взаимодействия генов Характер взаимодействия Расщепление по фенотипу в F 2 Генотипический состав фенотипических классов Пример
Взаимодействие аллельных генов
Полное доминирование Доминантный аллель A подавляет рецессивный аллель a 3:1 3A- : 1aa Наследование цвета семян гороха
Неполное доминирование Признак у гетерозиготной формы выражен слабее, чем у гомозиготной 1:2:1 1AA: 2Aa: 1aa Наследование окраски цветков ночной красавицы
Кодоминирование В гетерозиготном состоянии каждый из аллельных генов вызывает развитие контролируемого им признака 1:2:1 1I A I A: 2I A I B: 1I B I B Наследование групп крови у человека
Взаимодействие неаллельных генов
Кооперация Доминантные гены из разных пар (A, B), присутствуя в генотипе вместе, вызывают формирование нового признака. Присутствуя каждый по отдельности, гены А и В вызывают развитие своих признаков 9:3:3:1 9A-B- : 3A-bb: 3aaB- : 1aabb Наследование формы гребня кур
Комплементарность Доминантные гены из разных пар (A, B), присутствуя в генотипе вместе, вызывают формирование нового признака. Присутствуя каждый по отдельности, гены A и B развитие признака не вызывают 9:7 (9A-B-) : (3A-BB + 3aaB- + 1aabb) Наследование цвета цветков душистого горошка
Эпистаз доминантный Гены одной аллельной пары подавляют действие генов другой 13:3 (9I-C- + 3I-cc + 1iicc) : (3cci-) Наследование окраски оперения кур
рецессивный 9:3:4 9A-C- : 3aaC- : (3A-cc + 1aacc) Наследование окраски шерсти у домовых мышей
Полимерия Одновременное действие нескольких неаллельных генов 15:1 (9A 1 -A 2 + 3A 1 -a 2 a 2 + 3a 1 a 1 A 2 -) : 1a 1 a 1 a 2 a 2 Наследование цвета кожи у человека

Взаимодействие аллельных генов

Различают три типа взаимодействия аллельных генов: полное доминирование, неполное доминирование, кодоминирование.

  1. Полное доминирование — явление, когда доминантный ген полностью подавляет работу рецессивного гена, в результате чего развивается доминантный признак.
  2. Неполное доминирование — явление, когда доминантный ген не полностью подавляет работу рецессивного гена, в результате чего развивается промежуточный признак.
  3. Кодоминирование (независимое проявление) — явление, когда в формировании признака у гетерозиготного организма участвуют оба аллеля. У человека с серией множественных аллелей представлен ген, определяющий группу крови. При этом гены, обусловливающие группы крови A и B, являются кодоминантными по отношению друг к другу и оба доминантны по отношению к гену, определяющему группу крови 0.

Взаимодействие неаллельных генов

Различают четыре типа взаимодействия неалльлельных генов: кооперацию, комплементарность, эпистаз и полимерию.

Кооперация — явление, когда при взаимном действии двух доминантных неаллельных генов, каждый из которых имеет свое собственное фенотипическое проявление, происходит формирование нового признака.

Комплементарность — явление, когда признак развивается только при взаимном действии двух доминантных неаллельных генов, каждый из которых в отдельности не вызывает развитие признака.

Эпистаз — явление, когда один ген (как доминантный, так и рецессивный) подавляет действие другого (неаллельного) гена (как доминантного, так и рецессивного). Ген-подавитель (супрессор) может быть доминантным (доминантный эпистаз) или рецессивным (рецессивный эпистаз).

Полимерия — явление, когда несколько неаллельных доминантных генов отвечают за сходное воздействие на развитие одного и того же признака. Чем больше таких генов присутствуют в генотипе, тем ярче проявляется признак. Явление полимерии наблюдается при наследовании количественных признаков (цвет кожи, масса тела, удой коров).

В противоположность полимерии наблюдается такое явление, как плейотропия — множественное действие гена, когда один ген отвечает за развитие нескольких признаков.

В продолжение темы:
Из Бумаги

Открытка, как сердечко, изготовленная своими руками. Фотографии готовых открыток. Открытка, как сердечко, изготовленная своими руками. Фотографии готовых открыток....

Новые статьи
/
Популярные